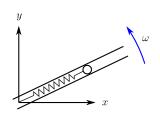
問 1. 図に示すように ,筒の中に質量 m の質点(小さな球)があり ,その質点はバネ定数 k のバネで原点と結ばれている.この筒を原点を中心に $\underline{水平面内で}$ 一定の角速度 ω で回転させる.原点から質点までの距離を r とおく.時刻 t=0 において, $r=r_0$, $\dot{r}=0$ であり,筒は x 軸と重なっている.また,バネは $t=0(r=r_0)$ のとき自然長である.筒と質点には摩擦は作用しないと仮定するとき,以下の問に答えよ.



- 1. 筒が質点に対して与える力S, およびバネが質点に与える力Fを図中に描け.
- 2. 筒と x' 軸が重なる回転座標系を考える.このとき,x' 軸方向の運動方程式を (m,k,r,r_0,ω) を用いて表せ.
- 3. この質点が単振動するための条件を (m,k,ω) を用いて書け .
- 4. この質点が単振動するとき , r を (m,k,r_0,ω,t) を用いて表せ .

解答

 $\frac{1}{y}$

2. x' 方向の運動方程式は以下の通り *1 .

$$m\ddot{r} = -F + mr\omega^2 \tag{1}$$

バネが質点に与える力はフックの法則より

$$F = k(r - r_0) \tag{2}$$

である.これより,

$$m\ddot{r} = -k(r - r_0) + mr\omega^2$$

を得る.

3. 式 (3) の両辺を m で割る .

$$\ddot{r} = -\frac{k}{m}(r - r_0) + r\omega^2 \tag{4}$$

整理すると、

$$\ddot{r} + \left(\frac{k}{m} - \omega^2\right)r = \frac{k}{m}r_0\tag{5}$$

となる.これより,単振動するためには,

$$\frac{k}{m} - \omega^2 > 0 \tag{6}$$

となる必要があることが分かる *2 .

(3)

^{*1} r=x' であることに注意

 $^{^{*2}}$ 実際に $r=e^{\lambda t}$ とおいて計算すると , $\frac{k}{m}-\omega^2>0$ のとき , λ が虚数を含む形で表され , 単振動することが分かる . λ が実数となるときは , 単振動しない .

4. 式(3)を解く.非斉次の線形微分方程式は,特解と 斉次線形微分方程式の一般解の和で表される.

まず , 式 (3) の右辺を 0 としたときの斉次線形微分方程式の一般解を求める . $r=e^{\lambda t}$ とおくと ,

$$\lambda = \pm i\sqrt{\frac{k}{m} - \omega^2} \tag{7}$$

を得る.これより,一般解は

$$r = A\cos\sqrt{\frac{k}{m} - \omega^2} t + B\sin\sqrt{\frac{k}{m} - \omega^2} t \qquad (8)$$

となる*3.

特解は,r=C とおくことにより求める.式(3) にr=C を代入すると,

$$\left(\frac{k}{m} - \omega^2\right)C = \frac{k}{m}r_0\tag{9}$$

よって,

$$C = \frac{kr_0}{k - m\omega^2} \tag{10}$$

これより,式(3)の一般解は,

$$r = A\cos\sqrt{\frac{k}{m} - \omega^2} \ t + B\sin\sqrt{\frac{k}{m} - \omega^2} \ t + \frac{kr_0}{k - m\omega^2} \tag{11}$$

となる.

初期条件 $r(t=0)=r_0$ および , $\dot{r}(t=0)=0$ を考慮すると , 係数 A,B が得られる .

計算すると,

$$r = \frac{r_0}{-\omega^2 + \frac{k}{m}} \left(\frac{k}{m} - \omega^2 \cos \sqrt{\frac{k}{m} - \omega^2} t \right)$$
 (12)

を得る .(多分 .)